Formulaes

(i)Addition of two real functions

Let $f : X \rightarrow R$ and $g : X \rightarrow R$ be any two real functions, where $X \in R$.

Then we define $(f + g) : X \rightarrow R$ by (f + g)(x) = f(x) + g(x), for all $x \in X$.

(ii) Subtraction of a real function from another

Let $f : X \rightarrow R$ and $g : X \rightarrow R$ be any two real functions, where $X \subseteq R$.

Then, we define $(f - g) : X \rightarrow R$ by (f - g)(x) = f(x) - g(x), for all $x \in X$.

(iii) Multiplication by a Scalar

Let $f:X \rightarrow R$ be a real function and α be any scalar belonging to R. Then the

product αf is function from X to R defined by (αf) (x) = αf (x), x \in X.

0

(iv) Multiplication of two real functions

Let $f: X \to \mathbf{R}$ and $g: x \to \mathbf{R}$ be any two real functions, where $X \subseteq \mathbf{R}$. Then product of these two functions i.e. $fg: X \to \mathbf{R}$ is defined by $(fg)(x) = f(x) g(x) \forall x \in X$.

(v) Quotient of two real function

Let f and g be two real functions defined from $X \to \mathbf{R}$. The quotient of f by g

denoted by $\frac{f}{g}$ is a function defined from $X \to \mathbf{R}$ as

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, provided $g(x) \neq 0, x \in X$.

Source: NCERT